1 |
.\" $Id: ukcprog.3,v 1.18 1993/02/23 11:31:42 gjap Exp $ UKC |
2 |
.\" .fX - print the argument in a fixed font |
3 |
.de fX |
4 |
\&\\$3\f(CR\\$1\fP\\$2 |
5 |
.. |
6 |
.\" .Vs - start example |
7 |
.de Vs |
8 |
.LP |
9 |
.ne 1i |
10 |
.RS |
11 |
.nf |
12 |
.ft CR |
13 |
.. |
14 |
.\" .Ve - end example |
15 |
.de Ve |
16 |
.ft P |
17 |
.fi |
18 |
.hy 0 |
19 |
.RE |
20 |
.LP |
21 |
.. |
22 |
.TH UKCPROG 3 "February 1991" "UKC Local" |
23 |
.SH NAME |
24 |
ukcprog \- Library of utilities for C programmers |
25 |
.SH SYNOPSIS |
26 |
.nf |
27 |
.LP |
28 |
In source code, |
29 |
.Vs |
30 |
#include <local/ukcprog.h> |
31 |
.Ve |
32 |
and link with |
33 |
.Vs |
34 |
cc ... -lukcprog |
35 |
.Ve |
36 |
.SH AVAILABILITY |
37 |
.LP |
38 |
.\" |
39 |
.\" The following sentence motivated the port to MS-DOG. |
40 |
.\" |
41 |
This is a UKC library, available for the \s-1UNIX\s0 and \s-1VMS\s0 |
42 |
operating systems, and for MS-DOS. |
43 |
.\" |
44 |
.\" It was worth it ... |
45 |
.\" |
46 |
The source code is freely available so if you want to make |
47 |
a source release of your application you can include a copy of the |
48 |
source of this library as well. |
49 |
To obtain a copy of the source code contact either of the authors |
50 |
named below. |
51 |
.SH DESCRIPTION |
52 |
.LP |
53 |
The ukcprog library contains generally useful low level routines. |
54 |
The |
55 |
.fX ukcprog.h |
56 |
header file contains prototypes for the |
57 |
routines as well as defining some useful macros and types. |
58 |
.Vs |
59 |
#ifdef __STDC__ |
60 |
#define PROTO(a) a |
61 |
typedef void *voidptr; |
62 |
#else |
63 |
#define PROTO(a) () |
64 |
#define const |
65 |
#define volatile |
66 |
#define signed |
67 |
typedef char *voidptr; |
68 |
#endif |
69 |
.Ve |
70 |
.LP |
71 |
The definitions of |
72 |
.fX const , |
73 |
.fX volatile |
74 |
and |
75 |
.fX signed |
76 |
allow these ANSI C keywords to be used in code which must be portable |
77 |
to pre-ANSI C compilers. |
78 |
.LP |
79 |
The |
80 |
.fX voidptr |
81 |
typedef is similarly there to help with code for pre-ANSI compilers |
82 |
which do not support the |
83 |
.fX "void *" ' ` |
84 |
type. |
85 |
Functions which are documented here as returning |
86 |
.fX "void *" ' ` |
87 |
return |
88 |
.fX "char *" ' ` |
89 |
when compiling with a non-ANSI C compiler. |
90 |
.LP |
91 |
The |
92 |
.fX PROTO |
93 |
macro is useful for declaring function prototypes |
94 |
for use with ANSI C while still allowing the code to be compiled with |
95 |
K&R compilers. |
96 |
It is used thus: |
97 |
.Vs |
98 |
int myfunc PROTO((int arg1, char *arg2)); |
99 |
.Ve |
100 |
With an ANSI C compiler this expands to |
101 |
.Vs |
102 |
int myfunc (int arg1, char *arg2); |
103 |
.Ve |
104 |
whereas a pre-ANSI compiler sees: |
105 |
.Vs |
106 |
int myfunc (); |
107 |
.Ve |
108 |
.LP |
109 |
Note the double brackets; these are necessary to make all the parameters |
110 |
a single argument to the |
111 |
.fX PROTO |
112 |
macro. |
113 |
.Vs |
114 |
#ifndef FALSE |
115 |
#define FALSE 0 |
116 |
#endif |
117 |
#ifndef TRUE |
118 |
#define TRUE 1 |
119 |
#endif |
120 |
#ifndef bool |
121 |
#define bool int |
122 |
#endif |
123 |
.Ve |
124 |
These define the commonly used |
125 |
.fX TRUE |
126 |
and |
127 |
.fX FALSE |
128 |
macros to their usual values. |
129 |
The definitions are protected in case these are already defined. |
130 |
The |
131 |
.fX bool |
132 |
macro is intended to be used to declared variables |
133 |
that are conceptually boolean. |
134 |
A |
135 |
.fX #define |
136 |
is used rather than a typedef because there might already be a typedef |
137 |
for |
138 |
.fX bool . |
139 |
.Vs |
140 |
#ifdef __STDC__ |
141 |
#define CAT(a,b) a ## b |
142 |
#else |
143 |
#define _IDENT(a) a |
144 |
#define CAT(a,b) _IDENT(a)b |
145 |
#endif /* !__STDC__ */ |
146 |
.Ve |
147 |
The |
148 |
.fX CAT |
149 |
macro can be used to glue two tokens together in the same way as |
150 |
the ANSI C |
151 |
.fX ## |
152 |
operator. |
153 |
.fX CAT |
154 |
also works with many (but not all) pre-ANSI C preprocessors. |
155 |
.Vs |
156 |
void panic(const char *message) |
157 |
.sp |
158 |
typedef void (*panic_handler_t)(const char *message); |
159 |
panic_handler_t install_panic_handler(panic_hander_t handler) |
160 |
.Ve |
161 |
By default |
162 |
.fX panic() |
163 |
produces a message on stderr of the form |
164 |
.Vs |
165 |
fatal internal error: \fIsomething\fP (aborting)... |
166 |
.Ve |
167 |
It then calls |
168 |
.fX abort(3) |
169 |
to produce a core dump. |
170 |
Alternative `panic handlers' can be installed using |
171 |
.fX install_panic_handler() |
172 |
which returns the previous handler. |
173 |
Panic handlers can perform tidy-up tasks, such as |
174 |
removing temporary files or calling |
175 |
.fX chdir(2) |
176 |
to arrange for |
177 |
the core to land in a safe place. |
178 |
If a panic handler is called and returns then the default |
179 |
action is carried out. |
180 |
.Vs |
181 |
void *e_malloc(size_t size) |
182 |
void *e_realloc(void *old, size_t size) |
183 |
char *strsave(const char *str) |
184 |
.Ve |
185 |
.fX e_malloc() |
186 |
and |
187 |
.fX e_realloc() |
188 |
are error-checking versions |
189 |
of the corresponding routines in the standard C library. |
190 |
They call |
191 |
.fX panic() |
192 |
if the request fails. |
193 |
.fX e_realloc() |
194 |
behaves according to the ANSI specification for |
195 |
.fX realloc() ; |
196 |
that is, if |
197 |
.fX old |
198 |
is NULL it behaves like |
199 |
.fX malloc() |
200 |
and if size is 0, it behaves like |
201 |
.fX free() . |
202 |
.fX strsave() |
203 |
allocates some memory using |
204 |
.fX e_malloc() , |
205 |
copies |
206 |
.fX str |
207 |
into it, and returns a pointer to the copy. |
208 |
.Vs |
209 |
char *fpgetline(FILE *fp) |
210 |
.Ve |
211 |
.fX fpgetline() |
212 |
reads characters from the standard IO stream |
213 |
.fX fp |
214 |
until a newline character or EOF is encountered. |
215 |
.fX fpgetline() |
216 |
returns |
217 |
.fX NULL |
218 |
if EOF or an error occurred before any characters were read; |
219 |
otherwise it returns a pointer to the NUL terminated line. |
220 |
.fX fpgetline() |
221 |
never adds a newline to the buffer. |
222 |
The user can check for a missing final newline in a file by checking |
223 |
the EOF flag of the stream pointer when |
224 |
.fX fpgetline() |
225 |
returns a non-NULL pointer. |
226 |
.LP |
227 |
When |
228 |
.fX fpgetline() |
229 |
returns |
230 |
.fX NULL |
231 |
the caller should check with |
232 |
.fX ferror(3) |
233 |
whether the cause was EOF or an error reading the stream |
234 |
.fX fp . |
235 |
.LP |
236 |
.fX fpgetline() |
237 |
returns a pointer to a static buffer that is resized as necessary |
238 |
to handle long lines. |
239 |
The caller can modify the contents of the buffer but must not free |
240 |
it or realloc it. |
241 |
The buffer is valid only until the next call of |
242 |
.fX fpgetline() . |
243 |
.Vs |
244 |
char *config_trim_line(char *line) |
245 |
.Ve |
246 |
.fX config_trim_line() |
247 |
trims comments and white space in place from a line. |
248 |
First it scans for the first |
249 |
.fX # ' ` |
250 |
character in the line. |
251 |
If there is one it is removed along with any following characters. |
252 |
Then leading and trailing whitespace characters (as defined by |
253 |
.IR isspace (3)) |
254 |
are removed. |
255 |
.fX config_trim_line() |
256 |
returns a pointer to the trimmed line (which will point into the line |
257 |
that it was given). |
258 |
.LP |
259 |
A typical use of this routine is to skip blank lines and comments from |
260 |
a configuration file. |
261 |
.Vs |
262 |
typedef void (*errf_ofunc_t)(const char *string); |
263 |
.sp |
264 |
void errf(const char *fmt, ...) |
265 |
char *strf(const char *fmt, ...) |
266 |
.sp |
267 |
errf_ofunc_t errf_set_ofunc(errf_ofunc_t func) |
268 |
const char *errf_set_prefix(const char *prefix) |
269 |
const char *errf_get_prefix(void) |
270 |
void_errf_set_progname(const char *progname) |
271 |
const char *errf_get_progname(void) |
272 |
char *formf(char *buffer, int buffer_size, |
273 |
const char *format, va_list args) |
274 |
void errf_usage(const char *usage) |
275 |
.Ve |
276 |
These routines form the basis of a generalised error handling system. |
277 |
.fX errf() |
278 |
formats an error message, much like |
279 |
.fX printf(3) , |
280 |
but then passes the formatted text to the `current output function'. |
281 |
The default output function appends a newline to the message and |
282 |
sends it to stderr. |
283 |
An alternative output function can be installed with |
284 |
.fX errf_set_ofunc() ; |
285 |
it returns the old one which can be re-installed as required. |
286 |
The default output function can optionally prefix the message with |
287 |
a fixed string; this can be inserted with |
288 |
.fX errf_set_prefix() . |
289 |
A pointer to the current prefix is returned by |
290 |
.fX errf_get_prefix() . |
291 |
By convention, this prefix is derived from the name of the program. |
292 |
.fX errf_set_progname() |
293 |
is a convenience routine which, when passed |
294 |
.fX argv[0] , |
295 |
munges it in an operating system specific way to produce the program name |
296 |
and sets the prefix to something that looks `nice'. |
297 |
A pointer to the program name (after munging) can be obtained by |
298 |
.fX errf_get_progname(). |
299 |
A usage line can be sent to the current output function by |
300 |
.fX errf_usage() ; |
301 |
it prefixes |
302 |
.Vs |
303 |
Usage: \fIprogname\fP |
304 |
.Ve |
305 |
to its argument, and exits with status 1. |
306 |
.LP |
307 |
.fX strf() |
308 |
formats a string in the same way as |
309 |
.fX errf() , |
310 |
but returns a pointer to a buffer obtained from |
311 |
.fX malloc(3) |
312 |
that |
313 |
contains the result. |
314 |
.LP |
315 |
.fX formf() |
316 |
is used in the internal implementation of |
317 |
.fX errf() |
318 |
and |
319 |
.fX strf() |
320 |
and |
321 |
.fX logf() |
322 |
(see below) and is not for the faint-hearted. |
323 |
It is made visible because it is useful if you need to implement |
324 |
other |
325 |
.fX errf() "-style" |
326 |
functions. |
327 |
In addition to the normal format conversions, |
328 |
.fX formf() |
329 |
provides |
330 |
.fX %m ' ` |
331 |
which inserts an error message |
332 |
corresponding to the current value of |
333 |
.fX errno |
334 |
into the output string. |
335 |
.Vs |
336 |
int logf_set_ofile PROTO((const char *filename, const char *prefix)); |
337 |
void logf(int level, const char *fmt, ...) |
338 |
int logf_set_level PROTO((int level)); |
339 |
void logf_errf_ofunc PROTO((const char *str)); |
340 |
.Ve |
341 |
These routines are an alternative to |
342 |
.I syslog (3) |
343 |
for applications that need to log messages to a specified file. |
344 |
.fX logf() |
345 |
handles the |
346 |
.fX fmt |
347 |
format string and arguments in the same same way as |
348 |
.fX errf() . |
349 |
If there has been no prior call to |
350 |
.fX logf_set_ofile () |
351 |
(see below) the message is |
352 |
displayed on stderr, prefixed with the current date and time. |
353 |
If the output |
354 |
.I is |
355 |
going to a file, |
356 |
.fX logf() |
357 |
tries to ensure that messages from multiple processes to a single log |
358 |
file are interleaved correctly. |
359 |
.LP |
360 |
The |
361 |
.fX level |
362 |
argument specifies the class of the message; it is one of |
363 |
.fX LG_DEBUG , |
364 |
.fX LG_INFO , |
365 |
or |
366 |
.fX LG_ERR |
367 |
(which are in increasing numerical order). |
368 |
Messages at a level less than the current log level are discarded. |
369 |
The default log level is |
370 |
.fX LG_INFO ; |
371 |
it can be set using |
372 |
.fX logf_set_level() , |
373 |
which also returns the previous log level. |
374 |
The log levels |
375 |
.fX LG_ALL |
376 |
and |
377 |
.fX LG_LOG |
378 |
are valid only in calls to |
379 |
.fX logf_set_level() ; |
380 |
.fX LG_ALL |
381 |
means log all messages and |
382 |
.fX LG_LOG |
383 |
means log only messages relating to |
384 |
.fX logf() |
385 |
itself. |
386 |
.LP |
387 |
.fX logf_set_ofile() |
388 |
sets the output file for |
389 |
.fX logf() |
390 |
messages. |
391 |
If the log file does not exist |
392 |
.fX logf_set_ofile() |
393 |
attempts to create it; otherwise it is opened for writing (without |
394 |
discarding any existing contents). |
395 |
If the attempt to create or open the file fails, |
396 |
.fX logf_set_ofile() |
397 |
gives an error message and returns -1, otherwise it returns zero. |
398 |
If the |
399 |
.fX prefix |
400 |
argument is not |
401 |
.fX NULL , |
402 |
the string specified is prepended to all future log messages. |
403 |
.fX logf_set_ofile() |
404 |
makes a copy of the string so it need not be preserved after the call. |
405 |
.LP |
406 |
.fX logf_errf_ofunc() |
407 |
logs the message |
408 |
.fX str |
409 |
at level |
410 |
.fX LG_ERR . |
411 |
It can be passed as an output function to |
412 |
.fX errf_set_ofunc() |
413 |
to arrange that all error messages are sent to a log file. |
414 |
.Ve |
415 |
.fX ssplit() |
416 |
splits a string into a vector of words, treating |
417 |
occurrences in the string of any of the characters in the |
418 |
.fX delimiters |
419 |
string as word separators. |
420 |
.LP |
421 |
If the delimiters string starts with a NUL character then multiple |
422 |
adjacent delimiters and leading delimiters generate zero length fields. |
423 |
Otherwise, leading delimiter characters are skipped and multiple adjacent |
424 |
delimiters are treated as a single delimiter. |
425 |
Thus |
426 |
.Vs |
427 |
char **words = ssplit(line, " \\t"); |
428 |
.Ve |
429 |
will to a shell-like split of a command line into words, and |
430 |
.Vs |
431 |
char **fields = ssplit(pwline, "\\0:"); |
432 |
.Ve |
433 |
would be good for splitting lines from the password file. |
434 |
.LP |
435 |
.fX ssplit() |
436 |
returns a |
437 |
.fX NULL |
438 |
terminated vector of words. |
439 |
The space for this vector and the pointed to words is allocated with |
440 |
a (single) call to |
441 |
.fX e_malloc() . |
442 |
.fX ssplit() |
443 |
thus never returns |
444 |
.fX NULL ; |
445 |
it aborts the program |
446 |
by calling |
447 |
.fX panic() |
448 |
if memory runs out. |
449 |
.LP |
450 |
The vector returned by |
451 |
.fX ssplit() |
452 |
should be freed when it is finished |
453 |
with by passing it to |
454 |
.fX free() . |
455 |
.Vs |
456 |
int get_host_addr(const char *hostname, struct in_addr *p_addr) |
457 |
.Ve |
458 |
.fX get_host_addr() |
459 |
looks up the IP address of |
460 |
.fX hostname |
461 |
using |
462 |
.IR gethostbyaddr (3). |
463 |
If the lookup succeeds it sets |
464 |
.fX *p_addr |
465 |
to the IP address of the host in network byte order. |
466 |
If the lookup fails it gives an error message with |
467 |
.fX errf() |
468 |
and returns -1. |
469 |
If |
470 |
.fX hostname |
471 |
consists of four decimal numbers separated by dots then |
472 |
.fX get_host_addr |
473 |
parses this as an IP quad and does not call |
474 |
.IR gethostbyname . |
475 |
.Vs |
476 |
int get_service_port(const char *servname, int *p_port) |
477 |
.Ve |
478 |
.fX get_service_port |
479 |
looks up the port number of the TCP service |
480 |
.fX servname |
481 |
using |
482 |
.IR getservbyname (3). |
483 |
If it succeeds it sets |
484 |
.fX *p_port |
485 |
to the port number in network byte order. |
486 |
Otherwise it gives an error message with |
487 |
.fX errf() |
488 |
and returns -1. |
489 |
If |
490 |
.fX servname |
491 |
is an \s-2ASCII\s0 decimal number then |
492 |
.fX get_service_port() |
493 |
returns that number (again in network byte order). |
494 |
.Vs |
495 |
ebuf_t *ebuf_create(bool errors_are_fatal); |
496 |
void ebuf_reset(ebuf_t *eb); |
497 |
ebuf_t *ebuf_start(ebuf_t *eb, bool errors_are_fatal); |
498 |
int ebuf_add(ebuf_t *eb, const char *buf, int count); |
499 |
char *ebuf_get(ebuf_t *eb, int *p_len); |
500 |
void ebuf_free(ebuf_t *eb); |
501 |
.Ve |
502 |
These routines implement variable sized contiguous buffers to which data |
503 |
can be appended at any time. |
504 |
.fX ebuf_create() |
505 |
creates a new zero length buffer. |
506 |
The |
507 |
.fX errors_are_fatal |
508 |
parameter controls the handling of errors; if it is |
509 |
.fX TRUE |
510 |
then all of the routines will call |
511 |
.fX panic() |
512 |
on failure. |
513 |
.LP |
514 |
|
515 |
.fX ebuf_add() |
516 |
appends |
517 |
.fX count |
518 |
bytes of memory pointed at by |
519 |
.fX data |
520 |
to the buffer |
521 |
.fX eb |
522 |
(which must have been created using |
523 |
.fX ebuf_create() ). |
524 |
.fX ebuf_add() |
525 |
returns zero on success. |
526 |
On failure it panics or returns |
527 |
.fX -1 |
528 |
(depending on the setting of |
529 |
.fX errors_are_fatal |
530 |
in the call of |
531 |
.fX ebuf_create()). |
532 |
.LP |
533 |
.fX ebuf_get() |
534 |
returns a pointer to the current contents of |
535 |
.fX eb ; |
536 |
if the |
537 |
.fX p_len |
538 |
parameter is not |
539 |
.fX NULL |
540 |
the current length of the buffer in bytes is stored there. |
541 |
The returned buffer and length are only valid up to the next call of |
542 |
.fX ebuf_add() , |
543 |
.fX ebuf_reset() |
544 |
or |
545 |
.fX ebuf_free(). |
546 |
.LP |
547 |
.fX ebuf_reset() |
548 |
frees the data associated with |
549 |
.fX eb |
550 |
and resets the length to zero. |
551 |
Furthur calls of |
552 |
.fX ebuf_add() |
553 |
can be used to add fresh data to |
554 |
.fX eb . |
555 |
.fX ebuf_free() |
556 |
frees and destroys |
557 |
.fX eb . |
558 |
.LP |
559 |
.fX ebuf_start() |
560 |
is a convenience routine which either creates or resets a buffer. |
561 |
If |
562 |
.fX eb |
563 |
is |
564 |
.fX NULL |
565 |
it calls |
566 |
.fX ebuf_create() |
567 |
with the supplied value of |
568 |
.fX errors_are_fatal . |
569 |
If |
570 |
.fX eb |
571 |
is not |
572 |
.fX NULL |
573 |
then it is passed to |
574 |
.fX ebuf_reset(). |
575 |
The routine is intended to be used like for static buffers in the following |
576 |
way: |
577 |
.Vs |
578 |
void foo(void) |
579 |
{ |
580 |
static ebuf_t *eb = NULL; |
581 |
|
582 |
eb = ebuf_start(eb, TRUE); |
583 |
... |
584 |
} |
585 |
.Ve |
586 |
The first time the function is called the buffer is created; on subsequent |
587 |
calls it is reset. |
588 |
.Vs |
589 |
alloc_pool_t *alloc_create_pool(void) |
590 |
.sp |
591 |
void *alloc(alloc_pool_t *ap, int nbytes) |
592 |
void *alloc_ck(alloc_pool_t *ap, int nbytes) |
593 |
.Ve |
594 |
.fX alloc_create_pool() |
595 |
creates a memory allocation `pool' and |
596 |
returns a handle referring to it. |
597 |
.fX alloc() |
598 |
allocates memory like |
599 |
.fX malloc(3) |
600 |
but from the |
601 |
specified pool rather from the general malloc arena. |
602 |
.fX alloc() |
603 |
calls |
604 |
.fX e_malloc() |
605 |
to obtain memory in reasonably |
606 |
large chunks when necessary. |
607 |
This means that it never returns |
608 |
.fX NULL ; |
609 |
the program is aborted |
610 |
via |
611 |
.fX panic() |
612 |
if there is insufficient memory to satisfy the |
613 |
request. |
614 |
The alternative interface |
615 |
.fX alloc_ck() |
616 |
returns |
617 |
.fX NULL |
618 |
if |
619 |
it runs out of memory; it is otherwise identical to |
620 |
.fX alloc() . |
621 |
Memory obtained with |
622 |
.fX alloc() |
623 |
cannot be freed individually; only |
624 |
entire pools can be freed. |
625 |
.Vs |
626 |
void alloc_free_pool(alloc_pool_t *ap) |
627 |
void alloc_reset_pool(alloc_pool_t *ap) |
628 |
.Ve |
629 |
.fX alloc_free_pool() |
630 |
frees an alloc pool, releasing all memory |
631 |
allocated from it with |
632 |
.fX alloc() . |
633 |
The pool is no longer valid after this call. |
634 |
.fX alloc_reset_pool() |
635 |
conceptually frees all the memory associated with |
636 |
a pool but does not return it via |
637 |
.fX free() . |
638 |
The pool remains valid and subsequent calls to |
639 |
.fX alloc() |
640 |
allocate |
641 |
memory from the existing memory associated with the pool if possible. |
642 |
.LP |
643 |
These routines are suitable for applications which make lots of small |
644 |
allocations for a data structure which is to be freed in one go. |
645 |
.fX alloc() |
646 |
is much faster than |
647 |
.fX malloc() |
648 |
as it does not do |
649 |
the bookkeeping to support individual freeing of allocated memory. |
650 |
It also has no space overhead other than that necessary to correctly |
651 |
align objects in memory. |
652 |
.LP |
653 |
.fX alloc_create_pool() |
654 |
is a lightweight routine \- it involves a |
655 |
single call to |
656 |
.fX malloc() |
657 |
plus some assignments to initialise the |
658 |
pool header structure. |
659 |
It is thus reasonable to use the |
660 |
.fX alloc() |
661 |
routines in situations where |
662 |
there are only going to be a few tens of calls to |
663 |
.fX alloc() . |
664 |
.Vs |
665 |
bool alloc_set_default_debug_flag(bool val) |
666 |
bool alloc_set_debug_flag(alloc_pool_t *ap, bool val) |
667 |
.Ve |
668 |
By default all memory obtained with |
669 |
.fX alloc() |
670 |
and related routines |
671 |
is initialised to the repeated byte |
672 |
.fX 0x53 . |
673 |
When memory is freed (with |
674 |
.fX alloc_free_pool() , |
675 |
.fX alloc_reset_pool() |
676 |
or |
677 |
.fX alloc_release() ) |
678 |
it is set |
679 |
to the repeated byte |
680 |
.fX 0x42 . |
681 |
This is intended to trap erroneous use of uninitialised data and data |
682 |
that has been freed \- newly allocated memory contains obvious garbage |
683 |
and freed memory is immediately stamped on. |
684 |
.LP |
685 |
Of course these safety features cost speed, so they can be turned off |
686 |
globally or per-pool. |
687 |
.fX alloc_set_debug_flag() |
688 |
sets the debugging flag for a pool; memory |
689 |
will be initialised to garbage and stamped on when freed only of the flag |
690 |
is non-zero. |
691 |
.fX alloc_set_default_debug_flag() |
692 |
sets the value of the flag used |
693 |
for pools created from then on with |
694 |
.fX alloc_create_pool() . |
695 |
Both routines return the previous value of the flag they set. |
696 |
.Vs |
697 |
char *allocstr(alloc_pool_t *ap, int nbytes) |
698 |
char *allocstr_ck(alloc_pool_t *ap, int nbytes) |
699 |
.Ve |
700 |
.fX allocstr() |
701 |
is like |
702 |
.fX alloc() |
703 |
except that it assumes that |
704 |
no alignment is required. |
705 |
It is thus suitable only for allocating space for strings. |
706 |
.fX allocstr() |
707 |
is implemented such that interspersed calls to |
708 |
.fX alloc() |
709 |
and |
710 |
.fX allocstr() |
711 |
will pack both |
712 |
the strings and the other objects tightly in memory with no space |
713 |
wasted on alignment. |
714 |
.fX allocstr() |
715 |
never returns |
716 |
.fX NULL |
717 |
\- it panics like |
718 |
.fX alloc() |
719 |
if there is no memory. |
720 |
.fX allocstr_ck() |
721 |
is the same as |
722 |
.fX allocstr() |
723 |
except that |
724 |
it returns |
725 |
.fX NULL |
726 |
if there is no memory. |
727 |
.Vs |
728 |
char *alloc_strdup(alloc_pool_t *ap, const char *s) |
729 |
.Ve |
730 |
.fX alloc_strdup() |
731 |
is a convenience routine that returns a pointer |
732 |
to a copy of a string allocated using |
733 |
.fX allocstr() . |
734 |
Note that it will never return |
735 |
.fX NULL |
736 |
as it uses |
737 |
.fX allocstr() |
738 |
rather than |
739 |
.fX allocstr_ck() . |
740 |
.Vs |
741 |
alloc_mark_t *alloc_mark(alloc_pool_t *ap) |
742 |
void alloc_release(alloc_pool_t *ap, alloc_mark_t *am) |
743 |
.Ve |
744 |
.fX alloc_mark() |
745 |
returns an opaque handle that `remembers' the |
746 |
current position in an alloc pool. |
747 |
A subsequent call to |
748 |
.fX alloc_release() |
749 |
conceptually frees all |
750 |
memory allocated from the pool since the corresponding call of |
751 |
.fX alloc_mark() . |
752 |
Subsequent calls to |
753 |
.fX alloc() |
754 |
et al will reuse the freed memory. |
755 |
A call to |
756 |
.fX alloc_release() |
757 |
renders invalid any marks that were |
758 |
returned after the |
759 |
.fX alloc_mark() |
760 |
call that returned the mark |
761 |
being passed to |
762 |
.fX alloc_release() . |
763 |
.Vs |
764 |
const char *ukcprog_version(void) |
765 |
.Ve |
766 |
.fX ukcprog_version() |
767 |
returns a string giving the current version number of the library. |
768 |
.SH BUGS |
769 |
This library treads rather freely on the name space. |
770 |
.SH AUTHORS |
771 |
.LP |
772 |
Godfrey Paul (gjap@ukc.ac.uk) |
773 |
.br |
774 |
Mark Russell (mtr@ukc.ac.uk) |
775 |
.sp |
776 |
Computing Laboratory, University of Kent at Canterbury. |