1 |
.\" $Id: ukcprog.3,v 1.18 1993/02/23 11:31:42 gjap Exp $ UKC |
2 |
.\" .fX - print the argument in a fixed font |
3 |
.de fX |
4 |
\&\\$3\f(CR\\$1\fP\\$2 |
5 |
.. |
6 |
.\" .Vs - start example |
7 |
.de Vs |
8 |
.LP |
9 |
.ne 1i |
10 |
.RS |
11 |
.nf |
12 |
.ft CR |
13 |
.. |
14 |
.\" .Ve - end example |
15 |
.de Ve |
16 |
.ft P |
17 |
.fi |
18 |
.hy 0 |
19 |
.RE |
20 |
.LP |
21 |
.. |
22 |
.TH UKCPROG 3 "February 1991" "UKC Local" |
23 |
.SH NAME |
24 |
ukcprog \- Library of utilities for C programmers |
25 |
.SH SYNOPSIS |
26 |
.nf |
27 |
.LP |
28 |
In source code, |
29 |
.Vs |
30 |
#include <ukcprog.h> |
31 |
.Ve |
32 |
and link with |
33 |
.Vs |
34 |
cc ... -lukcprog |
35 |
.Ve |
36 |
.SH AVAILABILITY |
37 |
.LP |
38 |
.\" |
39 |
.\" The following sentence motivated the port to MS-DOG. |
40 |
.\" |
41 |
This is a UKC library, available for the \s-1UNIX\s0 and \s-1VMS\s0 |
42 |
operating systems, and for MS-DOS. |
43 |
.\" |
44 |
.\" It was worth it ... |
45 |
.\" |
46 |
The source code is freely available so if you want to make |
47 |
a source release of your application you can include a copy of the |
48 |
source of this library as well. |
49 |
.SH DESCRIPTION |
50 |
.LP |
51 |
The ukcprog library contains generally useful low level routines. |
52 |
The |
53 |
.fX ukcprog.h |
54 |
header file contains prototypes for the |
55 |
routines as well as defining some useful macros and types. |
56 |
.Vs |
57 |
#ifdef __STDC__ |
58 |
#define PROTO(a) a |
59 |
typedef void *voidptr; |
60 |
#else |
61 |
#define PROTO(a) () |
62 |
#define const |
63 |
#define volatile |
64 |
#define signed |
65 |
typedef char *voidptr; |
66 |
#endif |
67 |
.Ve |
68 |
.LP |
69 |
The definitions of |
70 |
.fX const , |
71 |
.fX volatile |
72 |
and |
73 |
.fX signed |
74 |
allow these ANSI C keywords to be used in code which must be portable |
75 |
to pre-ANSI C compilers. |
76 |
.LP |
77 |
The |
78 |
.fX voidptr |
79 |
typedef is similarly there to help with code for pre-ANSI compilers |
80 |
which do not support the |
81 |
.fX "void *" ' ` |
82 |
type. |
83 |
Functions which are documented here as returning |
84 |
.fX "void *" ' ` |
85 |
return |
86 |
.fX "char *" ' ` |
87 |
when compiling with a non-ANSI C compiler. |
88 |
.LP |
89 |
The |
90 |
.fX PROTO |
91 |
macro is useful for declaring function prototypes |
92 |
for use with ANSI C while still allowing the code to be compiled with |
93 |
K&R compilers. |
94 |
It is used thus: |
95 |
.Vs |
96 |
int myfunc PROTO((int arg1, char *arg2)); |
97 |
.Ve |
98 |
With an ANSI C compiler this expands to |
99 |
.Vs |
100 |
int myfunc (int arg1, char *arg2); |
101 |
.Ve |
102 |
whereas a pre-ANSI compiler sees: |
103 |
.Vs |
104 |
int myfunc (); |
105 |
.Ve |
106 |
.LP |
107 |
Note the double brackets; these are necessary to make all the parameters |
108 |
a single argument to the |
109 |
.fX PROTO |
110 |
macro. |
111 |
.Vs |
112 |
#ifndef FALSE |
113 |
#define FALSE 0 |
114 |
#endif |
115 |
#ifndef TRUE |
116 |
#define TRUE 1 |
117 |
#endif |
118 |
#ifndef bool |
119 |
#define bool int |
120 |
#endif |
121 |
.Ve |
122 |
These define the commonly used |
123 |
.fX TRUE |
124 |
and |
125 |
.fX FALSE |
126 |
macros to their usual values. |
127 |
The definitions are protected in case these are already defined. |
128 |
The |
129 |
.fX bool |
130 |
macro is intended to be used to declared variables |
131 |
that are conceptually boolean. |
132 |
A |
133 |
.fX #define |
134 |
is used rather than a typedef because there might already be a typedef |
135 |
for |
136 |
.fX bool . |
137 |
.Vs |
138 |
#ifdef __STDC__ |
139 |
#define CAT(a,b) a ## b |
140 |
#else |
141 |
#define _IDENT(a) a |
142 |
#define CAT(a,b) _IDENT(a)b |
143 |
#endif /* !__STDC__ */ |
144 |
.Ve |
145 |
The |
146 |
.fX CAT |
147 |
macro can be used to glue two tokens together in the same way as |
148 |
the ANSI C |
149 |
.fX ## |
150 |
operator. |
151 |
.fX CAT |
152 |
also works with many (but not all) pre-ANSI C preprocessors. |
153 |
.Vs |
154 |
void panic(const char *message) |
155 |
.sp |
156 |
typedef void (*panic_handler_t)(const char *message); |
157 |
panic_handler_t install_panic_handler(panic_hander_t handler) |
158 |
.Ve |
159 |
By default |
160 |
.fX panic() |
161 |
produces a message on stderr of the form |
162 |
.Vs |
163 |
fatal internal error: \fIsomething\fP (aborting)... |
164 |
.Ve |
165 |
It then calls |
166 |
.fX abort(3) |
167 |
to produce a core dump. |
168 |
Alternative `panic handlers' can be installed using |
169 |
.fX install_panic_handler() |
170 |
which returns the previous handler. |
171 |
Panic handlers can perform tidy-up tasks, such as |
172 |
removing temporary files or calling |
173 |
.fX chdir(2) |
174 |
to arrange for |
175 |
the core to land in a safe place. |
176 |
If a panic handler is called and returns then the default |
177 |
action is carried out. |
178 |
.Vs |
179 |
void *e_malloc(size_t size) |
180 |
void *e_realloc(void *old, size_t size) |
181 |
char *strsave(const char *str) |
182 |
.Ve |
183 |
.fX e_malloc() |
184 |
and |
185 |
.fX e_realloc() |
186 |
are error-checking versions |
187 |
of the corresponding routines in the standard C library. |
188 |
They call |
189 |
.fX panic() |
190 |
if the request fails. |
191 |
.fX e_realloc() |
192 |
behaves according to the ANSI specification for |
193 |
.fX realloc() ; |
194 |
that is, if |
195 |
.fX old |
196 |
is NULL it behaves like |
197 |
.fX malloc() |
198 |
and if size is 0, it behaves like |
199 |
.fX free() . |
200 |
.fX strsave() |
201 |
allocates some memory using |
202 |
.fX e_malloc() , |
203 |
copies |
204 |
.fX str |
205 |
into it, and returns a pointer to the copy. |
206 |
.Vs |
207 |
char *fpgetline(FILE *fp) |
208 |
.Ve |
209 |
.fX fpgetline() |
210 |
reads characters from the standard IO stream |
211 |
.fX fp |
212 |
until a newline character or EOF is encountered. |
213 |
.fX fpgetline() |
214 |
returns |
215 |
.fX NULL |
216 |
if EOF or an error occurred before any characters were read; |
217 |
otherwise it returns a pointer to the NUL terminated line. |
218 |
.fX fpgetline() |
219 |
never adds a newline to the buffer. |
220 |
The user can check for a missing final newline in a file by checking |
221 |
the EOF flag of the stream pointer when |
222 |
.fX fpgetline() |
223 |
returns a non-NULL pointer. |
224 |
.LP |
225 |
When |
226 |
.fX fpgetline() |
227 |
returns |
228 |
.fX NULL |
229 |
the caller should check with |
230 |
.fX ferror(3) |
231 |
whether the cause was EOF or an error reading the stream |
232 |
.fX fp . |
233 |
.LP |
234 |
.fX fpgetline() |
235 |
returns a pointer to a static buffer that is resized as necessary |
236 |
to handle long lines. |
237 |
The caller can modify the contents of the buffer but must not free |
238 |
it or realloc it. |
239 |
The buffer is valid only until the next call of |
240 |
.fX fpgetline() . |
241 |
.Vs |
242 |
char *config_trim_line(char *line) |
243 |
.Ve |
244 |
.fX config_trim_line() |
245 |
trims comments and white space in place from a line. |
246 |
First it scans for the first |
247 |
.fX # ' ` |
248 |
character in the line. |
249 |
If there is one it is removed along with any following characters. |
250 |
Then leading and trailing whitespace characters (as defined by |
251 |
.IR isspace (3)) |
252 |
are removed. |
253 |
.fX config_trim_line() |
254 |
returns a pointer to the trimmed line (which will point into the line |
255 |
that it was given). |
256 |
.LP |
257 |
A typical use of this routine is to skip blank lines and comments from |
258 |
a configuration file. |
259 |
.Vs |
260 |
typedef void (*errf_ofunc_t)(const char *string); |
261 |
.sp |
262 |
void errf(const char *fmt, ...) |
263 |
char *strf(const char *fmt, ...) |
264 |
.sp |
265 |
errf_ofunc_t errf_set_ofunc(errf_ofunc_t func) |
266 |
const char *errf_set_prefix(const char *prefix) |
267 |
const char *errf_get_prefix(void) |
268 |
void_errf_set_progname(const char *progname) |
269 |
const char *errf_get_progname(void) |
270 |
char *formf(char *buffer, int buffer_size, |
271 |
const char *format, va_list args) |
272 |
void errf_usage(const char *usage) |
273 |
.Ve |
274 |
These routines form the basis of a generalised error handling system. |
275 |
.fX errf() |
276 |
formats an error message, much like |
277 |
.fX printf(3) , |
278 |
but then passes the formatted text to the `current output function'. |
279 |
The default output function appends a newline to the message and |
280 |
sends it to stderr. |
281 |
An alternative output function can be installed with |
282 |
.fX errf_set_ofunc() ; |
283 |
it returns the old one which can be re-installed as required. |
284 |
The default output function can optionally prefix the message with |
285 |
a fixed string; this can be inserted with |
286 |
.fX errf_set_prefix() . |
287 |
A pointer to the current prefix is returned by |
288 |
.fX errf_get_prefix() . |
289 |
By convention, this prefix is derived from the name of the program. |
290 |
.fX errf_set_progname() |
291 |
is a convenience routine which, when passed |
292 |
.fX argv[0] , |
293 |
munges it in an operating system specific way to produce the program name |
294 |
and sets the prefix to something that looks `nice'. |
295 |
A pointer to the program name (after munging) can be obtained by |
296 |
.fX errf_get_progname(). |
297 |
A usage line can be sent to the current output function by |
298 |
.fX errf_usage() ; |
299 |
it prefixes |
300 |
.Vs |
301 |
Usage: \fIprogname\fP |
302 |
.Ve |
303 |
to its argument, and exits with status 1. |
304 |
.LP |
305 |
.fX strf() |
306 |
formats a string in the same way as |
307 |
.fX errf() , |
308 |
but returns a pointer to a buffer obtained from |
309 |
.fX malloc(3) |
310 |
that |
311 |
contains the result. |
312 |
.LP |
313 |
.fX formf() |
314 |
is used in the internal implementation of |
315 |
.fX errf() |
316 |
and |
317 |
.fX strf() |
318 |
and |
319 |
.fX logf() |
320 |
(see below) and is not for the faint-hearted. |
321 |
It is made visible because it is useful if you need to implement |
322 |
other |
323 |
.fX errf() "-style" |
324 |
functions. |
325 |
In addition to the normal format conversions, |
326 |
.fX formf() |
327 |
provides |
328 |
.fX %m ' ` |
329 |
which inserts an error message |
330 |
corresponding to the current value of |
331 |
.fX errno |
332 |
into the output string. |
333 |
.Vs |
334 |
int logf_set_ofile PROTO((const char *filename, const char *prefix)); |
335 |
void logf(int level, const char *fmt, ...) |
336 |
int logf_set_level PROTO((int level)); |
337 |
void logf_errf_ofunc PROTO((const char *str)); |
338 |
.Ve |
339 |
These routines are an alternative to |
340 |
.I syslog (3) |
341 |
for applications that need to log messages to a specified file. |
342 |
.fX logf() |
343 |
handles the |
344 |
.fX fmt |
345 |
format string and arguments in the same same way as |
346 |
.fX errf() . |
347 |
If there has been no prior call to |
348 |
.fX logf_set_ofile () |
349 |
(see below) the message is |
350 |
displayed on stderr, prefixed with the current date and time. |
351 |
If the output |
352 |
.I is |
353 |
going to a file, |
354 |
.fX logf() |
355 |
tries to ensure that messages from multiple processes to a single log |
356 |
file are interleaved correctly. |
357 |
.LP |
358 |
The |
359 |
.fX level |
360 |
argument specifies the class of the message; it is one of |
361 |
.fX LG_DEBUG , |
362 |
.fX LG_INFO , |
363 |
or |
364 |
.fX LG_ERR |
365 |
(which are in increasing numerical order). |
366 |
Messages at a level less than the current log level are discarded. |
367 |
The default log level is |
368 |
.fX LG_INFO ; |
369 |
it can be set using |
370 |
.fX logf_set_level() , |
371 |
which also returns the previous log level. |
372 |
The log levels |
373 |
.fX LG_ALL |
374 |
and |
375 |
.fX LG_LOG |
376 |
are valid only in calls to |
377 |
.fX logf_set_level() ; |
378 |
.fX LG_ALL |
379 |
means log all messages and |
380 |
.fX LG_LOG |
381 |
means log only messages relating to |
382 |
.fX logf() |
383 |
itself. |
384 |
.LP |
385 |
.fX logf_set_ofile() |
386 |
sets the output file for |
387 |
.fX logf() |
388 |
messages. |
389 |
If the log file does not exist |
390 |
.fX logf_set_ofile() |
391 |
attempts to create it; otherwise it is opened for writing (without |
392 |
discarding any existing contents). |
393 |
If the attempt to create or open the file fails, |
394 |
.fX logf_set_ofile() |
395 |
gives an error message and returns -1, otherwise it returns zero. |
396 |
If the |
397 |
.fX prefix |
398 |
argument is not |
399 |
.fX NULL , |
400 |
the string specified is prepended to all future log messages. |
401 |
.fX logf_set_ofile() |
402 |
makes a copy of the string so it need not be preserved after the call. |
403 |
.LP |
404 |
.fX logf_errf_ofunc() |
405 |
logs the message |
406 |
.fX str |
407 |
at level |
408 |
.fX LG_ERR . |
409 |
It can be passed as an output function to |
410 |
.fX errf_set_ofunc() |
411 |
to arrange that all error messages are sent to a log file. |
412 |
.Ve |
413 |
.fX ssplit() |
414 |
splits a string into a vector of words, treating |
415 |
occurrences in the string of any of the characters in the |
416 |
.fX delimiters |
417 |
string as word separators. |
418 |
.LP |
419 |
If the delimiters string starts with a NUL character then multiple |
420 |
adjacent delimiters and leading delimiters generate zero length fields. |
421 |
Otherwise, leading delimiter characters are skipped and multiple adjacent |
422 |
delimiters are treated as a single delimiter. |
423 |
Thus |
424 |
.Vs |
425 |
char **words = ssplit(line, " \\t"); |
426 |
.Ve |
427 |
will to a shell-like split of a command line into words, and |
428 |
.Vs |
429 |
char **fields = ssplit(pwline, "\\0:"); |
430 |
.Ve |
431 |
would be good for splitting lines from the password file. |
432 |
.LP |
433 |
.fX ssplit() |
434 |
returns a |
435 |
.fX NULL |
436 |
terminated vector of words. |
437 |
The space for this vector and the pointed to words is allocated with |
438 |
a (single) call to |
439 |
.fX e_malloc() . |
440 |
.fX ssplit() |
441 |
thus never returns |
442 |
.fX NULL ; |
443 |
it aborts the program |
444 |
by calling |
445 |
.fX panic() |
446 |
if memory runs out. |
447 |
.LP |
448 |
The vector returned by |
449 |
.fX ssplit() |
450 |
should be freed when it is finished |
451 |
with by passing it to |
452 |
.fX free() . |
453 |
.Vs |
454 |
int get_host_addr(const char *hostname, struct in_addr *p_addr) |
455 |
.Ve |
456 |
.fX get_host_addr() |
457 |
looks up the IP address of |
458 |
.fX hostname |
459 |
using |
460 |
.IR gethostbyaddr (3). |
461 |
If the lookup succeeds it sets |
462 |
.fX *p_addr |
463 |
to the IP address of the host in network byte order. |
464 |
If the lookup fails it gives an error message with |
465 |
.fX errf() |
466 |
and returns -1. |
467 |
If |
468 |
.fX hostname |
469 |
consists of four decimal numbers separated by dots then |
470 |
.fX get_host_addr |
471 |
parses this as an IP quad and does not call |
472 |
.IR gethostbyname . |
473 |
.Vs |
474 |
int get_service_port(const char *servname, int *p_port) |
475 |
.Ve |
476 |
.fX get_service_port |
477 |
looks up the port number of the TCP service |
478 |
.fX servname |
479 |
using |
480 |
.IR getservbyname (3). |
481 |
If it succeeds it sets |
482 |
.fX *p_port |
483 |
to the port number in network byte order. |
484 |
Otherwise it gives an error message with |
485 |
.fX errf() |
486 |
and returns -1. |
487 |
If |
488 |
.fX servname |
489 |
is an \s-2ASCII\s0 decimal number then |
490 |
.fX get_service_port() |
491 |
returns that number (again in network byte order). |
492 |
.Vs |
493 |
ebuf_t *ebuf_create(bool errors_are_fatal); |
494 |
void ebuf_reset(ebuf_t *eb); |
495 |
ebuf_t *ebuf_start(ebuf_t *eb, bool errors_are_fatal); |
496 |
int ebuf_add(ebuf_t *eb, const char *buf, int count); |
497 |
char *ebuf_get(ebuf_t *eb, int *p_len); |
498 |
void ebuf_free(ebuf_t *eb); |
499 |
.Ve |
500 |
These routines implement variable sized contiguous buffers to which data |
501 |
can be appended at any time. |
502 |
.fX ebuf_create() |
503 |
creates a new zero length buffer. |
504 |
The |
505 |
.fX errors_are_fatal |
506 |
parameter controls the handling of errors; if it is |
507 |
.fX TRUE |
508 |
then all of the routines will call |
509 |
.fX panic() |
510 |
on failure. |
511 |
.LP |
512 |
|
513 |
.fX ebuf_add() |
514 |
appends |
515 |
.fX count |
516 |
bytes of memory pointed at by |
517 |
.fX data |
518 |
to the buffer |
519 |
.fX eb |
520 |
(which must have been created using |
521 |
.fX ebuf_create() ). |
522 |
.fX ebuf_add() |
523 |
returns zero on success. |
524 |
On failure it panics or returns |
525 |
.fX -1 |
526 |
(depending on the setting of |
527 |
.fX errors_are_fatal |
528 |
in the call of |
529 |
.fX ebuf_create()). |
530 |
.LP |
531 |
.fX ebuf_get() |
532 |
returns a pointer to the current contents of |
533 |
.fX eb ; |
534 |
if the |
535 |
.fX p_len |
536 |
parameter is not |
537 |
.fX NULL |
538 |
the current length of the buffer in bytes is stored there. |
539 |
The returned buffer and length are only valid up to the next call of |
540 |
.fX ebuf_add() , |
541 |
.fX ebuf_reset() |
542 |
or |
543 |
.fX ebuf_free(). |
544 |
.LP |
545 |
.fX ebuf_reset() |
546 |
frees the data associated with |
547 |
.fX eb |
548 |
and resets the length to zero. |
549 |
Furthur calls of |
550 |
.fX ebuf_add() |
551 |
can be used to add fresh data to |
552 |
.fX eb . |
553 |
.fX ebuf_free() |
554 |
frees and destroys |
555 |
.fX eb . |
556 |
.LP |
557 |
.fX ebuf_start() |
558 |
is a convenience routine which either creates or resets a buffer. |
559 |
If |
560 |
.fX eb |
561 |
is |
562 |
.fX NULL |
563 |
it calls |
564 |
.fX ebuf_create() |
565 |
with the supplied value of |
566 |
.fX errors_are_fatal . |
567 |
If |
568 |
.fX eb |
569 |
is not |
570 |
.fX NULL |
571 |
then it is passed to |
572 |
.fX ebuf_reset(). |
573 |
The routine is intended to be used like for static buffers in the following |
574 |
way: |
575 |
.Vs |
576 |
void foo(void) |
577 |
{ |
578 |
static ebuf_t *eb = NULL; |
579 |
|
580 |
eb = ebuf_start(eb, TRUE); |
581 |
... |
582 |
} |
583 |
.Ve |
584 |
The first time the function is called the buffer is created; on subsequent |
585 |
calls it is reset. |
586 |
.Vs |
587 |
alloc_pool_t *alloc_create_pool(void) |
588 |
.sp |
589 |
void *alloc(alloc_pool_t *ap, int nbytes) |
590 |
void *alloc_ck(alloc_pool_t *ap, int nbytes) |
591 |
.Ve |
592 |
.fX alloc_create_pool() |
593 |
creates a memory allocation `pool' and |
594 |
returns a handle referring to it. |
595 |
.fX alloc() |
596 |
allocates memory like |
597 |
.fX malloc(3) |
598 |
but from the |
599 |
specified pool rather from the general malloc arena. |
600 |
.fX alloc() |
601 |
calls |
602 |
.fX e_malloc() |
603 |
to obtain memory in reasonably |
604 |
large chunks when necessary. |
605 |
This means that it never returns |
606 |
.fX NULL ; |
607 |
the program is aborted |
608 |
via |
609 |
.fX panic() |
610 |
if there is insufficient memory to satisfy the |
611 |
request. |
612 |
The alternative interface |
613 |
.fX alloc_ck() |
614 |
returns |
615 |
.fX NULL |
616 |
if |
617 |
it runs out of memory; it is otherwise identical to |
618 |
.fX alloc() . |
619 |
Memory obtained with |
620 |
.fX alloc() |
621 |
cannot be freed individually; only |
622 |
entire pools can be freed. |
623 |
.Vs |
624 |
void alloc_free_pool(alloc_pool_t *ap) |
625 |
void alloc_reset_pool(alloc_pool_t *ap) |
626 |
.Ve |
627 |
.fX alloc_free_pool() |
628 |
frees an alloc pool, releasing all memory |
629 |
allocated from it with |
630 |
.fX alloc() . |
631 |
The pool is no longer valid after this call. |
632 |
.fX alloc_reset_pool() |
633 |
conceptually frees all the memory associated with |
634 |
a pool but does not return it via |
635 |
.fX free() . |
636 |
The pool remains valid and subsequent calls to |
637 |
.fX alloc() |
638 |
allocate |
639 |
memory from the existing memory associated with the pool if possible. |
640 |
.LP |
641 |
These routines are suitable for applications which make lots of small |
642 |
allocations for a data structure which is to be freed in one go. |
643 |
.fX alloc() |
644 |
is much faster than |
645 |
.fX malloc() |
646 |
as it does not do |
647 |
the bookkeeping to support individual freeing of allocated memory. |
648 |
It also has no space overhead other than that necessary to correctly |
649 |
align objects in memory. |
650 |
.LP |
651 |
.fX alloc_create_pool() |
652 |
is a lightweight routine \- it involves a |
653 |
single call to |
654 |
.fX malloc() |
655 |
plus some assignments to initialise the |
656 |
pool header structure. |
657 |
It is thus reasonable to use the |
658 |
.fX alloc() |
659 |
routines in situations where |
660 |
there are only going to be a few tens of calls to |
661 |
.fX alloc() . |
662 |
.Vs |
663 |
bool alloc_set_default_debug_flag(bool val) |
664 |
bool alloc_set_debug_flag(alloc_pool_t *ap, bool val) |
665 |
.Ve |
666 |
By default all memory obtained with |
667 |
.fX alloc() |
668 |
and related routines |
669 |
is initialised to the repeated byte |
670 |
.fX 0x53 . |
671 |
When memory is freed (with |
672 |
.fX alloc_free_pool() , |
673 |
.fX alloc_reset_pool() |
674 |
or |
675 |
.fX alloc_release() ) |
676 |
it is set |
677 |
to the repeated byte |
678 |
.fX 0x42 . |
679 |
This is intended to trap erroneous use of uninitialised data and data |
680 |
that has been freed \- newly allocated memory contains obvious garbage |
681 |
and freed memory is immediately stamped on. |
682 |
.LP |
683 |
Of course these safety features cost speed, so they can be turned off |
684 |
globally or per-pool. |
685 |
.fX alloc_set_debug_flag() |
686 |
sets the debugging flag for a pool; memory |
687 |
will be initialised to garbage and stamped on when freed only of the flag |
688 |
is non-zero. |
689 |
.fX alloc_set_default_debug_flag() |
690 |
sets the value of the flag used |
691 |
for pools created from then on with |
692 |
.fX alloc_create_pool() . |
693 |
Both routines return the previous value of the flag they set. |
694 |
.Vs |
695 |
char *allocstr(alloc_pool_t *ap, int nbytes) |
696 |
char *allocstr_ck(alloc_pool_t *ap, int nbytes) |
697 |
.Ve |
698 |
.fX allocstr() |
699 |
is like |
700 |
.fX alloc() |
701 |
except that it assumes that |
702 |
no alignment is required. |
703 |
It is thus suitable only for allocating space for strings. |
704 |
.fX allocstr() |
705 |
is implemented such that interspersed calls to |
706 |
.fX alloc() |
707 |
and |
708 |
.fX allocstr() |
709 |
will pack both |
710 |
the strings and the other objects tightly in memory with no space |
711 |
wasted on alignment. |
712 |
.fX allocstr() |
713 |
never returns |
714 |
.fX NULL |
715 |
\- it panics like |
716 |
.fX alloc() |
717 |
if there is no memory. |
718 |
.fX allocstr_ck() |
719 |
is the same as |
720 |
.fX allocstr() |
721 |
except that |
722 |
it returns |
723 |
.fX NULL |
724 |
if there is no memory. |
725 |
.Vs |
726 |
char *alloc_strdup(alloc_pool_t *ap, const char *s) |
727 |
.Ve |
728 |
.fX alloc_strdup() |
729 |
is a convenience routine that returns a pointer |
730 |
to a copy of a string allocated using |
731 |
.fX allocstr() . |
732 |
Note that it will never return |
733 |
.fX NULL |
734 |
as it uses |
735 |
.fX allocstr() |
736 |
rather than |
737 |
.fX allocstr_ck() . |
738 |
.Vs |
739 |
alloc_mark_t *alloc_mark(alloc_pool_t *ap) |
740 |
void alloc_release(alloc_pool_t *ap, alloc_mark_t *am) |
741 |
.Ve |
742 |
.fX alloc_mark() |
743 |
returns an opaque handle that `remembers' the |
744 |
current position in an alloc pool. |
745 |
A subsequent call to |
746 |
.fX alloc_release() |
747 |
conceptually frees all |
748 |
memory allocated from the pool since the corresponding call of |
749 |
.fX alloc_mark() . |
750 |
Subsequent calls to |
751 |
.fX alloc() |
752 |
et al will reuse the freed memory. |
753 |
A call to |
754 |
.fX alloc_release() |
755 |
renders invalid any marks that were |
756 |
returned after the |
757 |
.fX alloc_mark() |
758 |
call that returned the mark |
759 |
being passed to |
760 |
.fX alloc_release() . |
761 |
.Vs |
762 |
const char *ukcprog_version(void) |
763 |
.Ve |
764 |
.fX ukcprog_version() |
765 |
returns a string giving the current version number of the library. |
766 |
.SH BUGS |
767 |
This library treads rather freely on the name space. |
768 |
.SH AUTHORS |
769 |
.LP |
770 |
Godfrey Paul |
771 |
.br |
772 |
Mark Russell |
773 |
.sp |
774 |
Computing Laboratory, University of Kent at Canterbury. |
775 |
.br |
776 |
Contact: cs-sysadmin@kent.ac.uk |